翻訳と辞書 |
Cyclic number (group theory) : ウィキペディア英語版 | Cyclic number (group theory) A cyclic number〔(Carmichael Multiples of Odd Cyclic Numbers )〕 is a natural number ''n'' such that ''n'' and φ(''n'') are coprime. Here φ is Euler's totient function. An equivalent definition is that a number ''n'' is cyclic iff any group of order ''n'' is cyclic.〔See T. Szele, ''Über die endlichen Ordnungszahlen zu denen nur eine Gruppe gehört'', Com- menj. Math. Helv., 20 (1947), 265–67.〕 Any prime number is clearly cyclic. All cyclic numbers are square-free.〔For if some prime square ''p''2 divides ''n'', then from the formula for φ it is clear that ''p'' is a common divisor of ''n'' and φ(''n'').〕 Let ''n'' = ''p''1 ''p''2 … ''p''''k'' where the ''p''''i'' are distinct primes, then φ(''n'') = (''p''1 − 1)(''p''2 − 1)...(''p''''k'' – 1). If no ''p''''i'' divides any (''p''''j'' – 1), then ''n'' and φ(''n'') have no common (prime) divisor, and ''n'' is cyclic. The first cyclic numbers are 1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 123, 127, 131, 133, 137, 139, 141, 143, 145, 149, ... . ==References==
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Cyclic number (group theory)」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|